Researchers now have a new way of treating the ocean's most delicate, soft-bodied creatures with the care they need.A team from Harvard University's Wyss Institute, John A. Paulson School of Engineering and Applied Sciences (SEAS), and Radcliffe Institute for Advanced Study made an origami-inspired enclosure to safely transport creatures like jellyfish, squid, and octopuses.
“We approach these animals as if they are works of art: Would we cut pieces out of the ‘Mona Lisa’ to study it? No — we’d use the most innovative tools available. These deep-sea organisms, some being thousands of years old, deserve to be treated with a similar gentleness when we’re interacting with them,” said collaborating author David Gruber, who is a 2017‒2018 Radcliffe Fellow, National Geographic Explorer, and professor of biology and environmental science at Baruch College, CUNY.
Currently, most marine teams have a handful of ways to collect soft-bodied marine life -- and none of them are extremely beneficial to the creature. One way is through a detritus sampler, a tube-like device that uses "doors" on either end to quickly trap the creature.
As the Harvard team points out, detritus samplers require a bit of skill on the end of the user or they run the risk of harming the creature. The second most common type of creature-capturing device is a bit like a giant suction cup with a storage bucket. However, that common technique is one of the most detrimental to soft-bodied creatures.
The Harvard team found both capture techniques unacceptable. The study's first author Zhi Ern Teoh started the project after being inspired by a class taught by Wynn professor Chuck Hoberman. Initially, Teoh wanted to apply his work with microbots and folding robots into a new way. A fellow researcher saw Teoh's design and suggested it could be a novel way to capture sea creatures rather than the rougher alternatives.Teoh's device has five 3-D printed polymer petals that open up via rotating joints attached on a scaffolding. Whenever a single motor applies torque to where the petals meet, the researchers explained, the device opens like a hollow dodecahedron -- hence it's named Rotary Actuated Dodecahedron (RAD).