UK biomimetic engineering startup Animal Dynamics is building a
Last fall the company switched from researching the feasibility of the concept into phase two: actually trying to build the thing. They now say they’re confident they’ll have a flying prototype of their Skeeter drone to demo by this summer — with the tech potentially deployed in the field by the end of next year.
To be clear this microdrone has not yet got off the ground. At this
The team is also looking to raise around £4 million in Series A funding in the next few months for continued development of Skeeter but also to fund some potential spin-out technologies they’ve created along the way — such as a
“We’re fundamentally interested in developing commercial products from studies and understanding of how nature reaches these tricks that allow greater performance and efficiency,” says Caccia.
Drones with flapping wings do exist — including a DARPA-backed drone that resembles a hummingbird, built by US company
Yet rotary blades have drawbacks. They don’t support stable flight in windy conditions. They’re noisy. They can even be dangerous. And they can require a lot of power to stay airborne. Hence the MoD’s hope of driving
“It’s a very extreme challenge, set down from them — DSTL came up with the requirements — which is can you make something at this scale operate in high wind and difficult environmental conditions,” says Caccia, discussing the MoD’s requirements for the Skeeter drone.
“They’d been using small drones in Afghanistan and Iraq with quite a lot of success because when the environmental conditions are right they are extremely useful for soldiers on the ground to go out and see what’s
As Caccia tells it, the ‘usual suspect’ defence suppliers weren’t at all confident they could build anything to meet the MoD’s microdrone challenge. But Animal Dynamics’ other co-founder, Adrian Thomas, a professor of biomechanics in the Zoology Department of Oxford, suggested the answer could lie in looking to nature for inspiration — given that birds and insects are able to achieve stable flight in turbulent conditions. And, ultimately, Animal Dynamics’ pitch secured the DSTL funds.
“Adrian was doing some work in his garden during Storm Doris and there were 50
Asked for an opinion on the engineering challenges of flapping, Dr Mirko Kovac, director of the Aerial Robotics Lab at Imperial College London, tells us: “
Commenting on the Skeeter project specifically, Kovac adds: “The mentioned timeline seems possible but it will depend on the size and weight of the vehicle. Bird-sized flapping wing vehicles are partially already available on the
Caccia says the biggest remaining challenge to getting Skeeter off the ground at this point is the mechanical design. Flapping, as you’d expect, is a lot more complex in engineering terms than spinning — especially if you also have relatively little power to play with, as it’s a lightweight, battery-operated device.
“The challenge is really around producing a very low friction mechanism. So the wings we’ve built, the flight control system has been solved, it’s actually the
“Even the slightest friction will cause resistance, and create heat and stop the thing from working properly. Most mechanical systems get around it by putting an unreasonable amount of power in. We don’t have that so we have to make things run very, very smoothly.”
Thomas also points to “friction and inertial load” as the hard problems. “The high leverage at the wing hinge means that the motors ‘see’ about 50 times the wing weight, so driving the wing weight down has huge benefits. Similarly, apart from the aerodynamic loads, almost all the work done by the motors is work against friction in the flapping system, driving the friction in the system down pays huge dividends,” he says.
“The stability and control systems may seem challenging, but there has been a lot of work done on control and stability in birds and insects, and our vehicle has a huge advantage over any of the other current drones that can hover — turn the motor off and it glides, with good passive stability, down to a relatively gentle landing.”
On the plus side, the team says it’s benefiting from the easy availability of electronic components — spilling over from the mobile industry.
“The extraordinary thing and one of the factors that
He also suggests this liberal availability of electronic components is providing an added incentive for the MoD to fund projects such as Skeeter. “They need to try and keep one step ahead, but also engage with the tech developer world far more to understand how these technologies are being used,” he adds.
The dragonfly-
One thing is certain: should Skeeter get off the ground, this is going to be a very bespoke animal indeed — a drone made to measure for its military masters. But, while you’re in no danger of receiving an airfreighted Amazon package to your doorstep conveyed via an industrious team of Skeeter dragonflies, Caccia does reckon flapping wing tech holds promise for more than just stealthy surveillance microdrones. Especially as the form factor need not be so small. And it’s certainly true that military-funded technology has a habit of filtering down to the consumer space after the expensive R&D work is done — as indeed is the case with drone tech itself.
“I think there’s a market for it not just in the military but also elsewhere too, and also at different scales. There’s been a very clear focus requirement to make it at this
“There’s all sorts of advantages you can have with a larger, flapping drone. Far, far more efficient flying from A to B. Can still hover. Much less dangerous. You can put your finger in the flapping wings as they flap and it won’t hurt you… And also with a quadcopter drone, if any of the mechanism fails it falls out of the sky like a brick. Whereas the things that we’re making glide in their neutral position.”
Could a larger flapping wing drone be capable of taking payloads — say for a delivery use-case? Caccia reckons it could, though he says it would need to have half a meter to a meter wingspan. Which, sadly, suggests there’s also little prospect of urban drone delivery via giant dragonflies. Maybe just for some edge cases — such as delivering humanitarian aid to remoter areas.
“I think delivery
“A quadcopter type thing is pretty nigh useless for that because the flight time’s so low. So I think it’s something that’s definitely worth exploring.”
Even at the microdrone scale, the team sees potential agricultural use-cases for flapping propulsion. “One area I’d like to explore is precision agriculture inside greenhouses,” says Thomas. “Using the drones to deliver precise tiny doses of nutrients or pesticides to the plants that need them rather than dosing the whole greenhouse, that might be a good use for the existing drones once we have them in mass production and have the cost down to sensible numbers.”
It is also investigating the potential of flapping in water, for propulsion and
“This is the activity that Adrian and I first got excited about,” he tells TechCrunch. “It’s something we’re hoping to be able to get out this summer — and have a go at breaking the world speed record. Just as a demonstrator of how you can make something flapping go very fast.”
“Propeller design efficiency has basically reached an asymptote, there’s been no real, material improvement in the efficiency of propellers in the last 20 years,” Caccia adds. “Of course everyone thinks flapping is a completely ridiculous thing to do but nature’s way of telling you you’re wasting energy in water is a stream of bubbles. And fish don’t produce a stream of bubbles when they’re going about… So we’re interested in all sorts of areas. We’re making an
Source: Tech Crunch