Roboticists of Tokyo have developed a robot called DRAGON, which (obviously) stands for for “Dual-rotor embedded multilink Robot with the Ability of multi-deGree-of-freedom aerial transformatiON.” It’s a modular flying robot powered by ducted fans that can transform literally on the fly, from a square to a snake to anything in between, allowing it to stretch out to pass through small holes and then make whatever other shape you want once it’s on the other side.
DRAGON is made of a series of linked modules, each of which consists of a pair of ducted fan thrusters that can be actuated in roll and pitch to vector thrust in just about any direction you need. The modules are connected to one another with a powered hinged joint, and the whole robot is driven by an Intel Euclid and powered by a battery pack (providing 3 minutes of flight time, which is honestly more than I would have thought), mounted along the robot’s spine. This particular prototype is made up of four modules, allowing it to behave sort of like a quad-rotor, even though I suppose technically it’s an octo-rotor.
The paper presented at ICRA focused mostly on the fact that they managed to get this thing off the ground, in the air, and transforming a little bit (and there’s like four pages of math involved in that). DRAGON can fly as a straight line, as a box, as an “L” shape, and also has more complex 3D shapes like a zig-zag or a spiral.